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Introduction

Ohio is no stranger to water quality problems, with some of  them garnering national and 
international attention. In 2011, Lake Erie, which borders 4 U.S. states and Ontario, Cana-
da, had a record setting algal bloom that covered 2000 square miles, three times larger than 
any other previously observed [1], [2]. This phenomena, Cyanobacterial Harmful Algal 
Bloom (CyanoHAB), primarily occurs due to excessive nutrient presence from agricultural 
fertilizer and urban runoff, as well as improper wastewater discharge [1]– [3].
In the case of  the 2011 bloom, unusually high water temperatures and phosphorus lev-
els - the latter likely caused by fertilizer runoff  from northern Ohio farms - combined to 
nurture and grow the algal population in the lake [4]. When this algal population grows 
to a critical mass, its toxin release can negatively impact humans and animals drinking 
this contaminated water by causing skin irritation. Other problems, including respiratory, 
gastrointestinal and neurological problems, are particularly dangerous to certain high risk 
groups such as people with chronic diseases, children, and the elderly [5].
Furthermore, algal bloom growth and its subsequent decomposition depletes the water 
body of  dissolved oxygen, resulting in a higher death rate for fish and other aquatic organ-
isms. Though this problem had its roots in northern Ohio, toxic CyanoHABs have been 
implicated in human illness and death in 43 states nationwide [3].
Local pond health is also a subject of  concern regarding water quality in Ohio. In July of  
2018, Governor John Kasich signed an executive order declaring eight major watersheds in 
Ohio as distressed in order to target runoff  from agricultural fertilizer applications.
Municipal wastewater effluent has also been cited as a threat to local pond health. It has 
been termed as inadequately treated sludge discharged into the environment. Moreover, 
this effluent may contain organic emerging contaminants such as pharmaceuticals, illicit 
drugs and personal care products, which in turn could lead to endocrine disruption in 
local wildlife. Petrie et. al. [6] notes that these problems are hard to monitor citing that “[d]
uring wastewater treatment, there is a lack of  suspended particulate matter analysis due to 
further preparation requirements and a lack of  good analytical approaches.”
And in the context of  private ponds, Pennsylvania State University [7] found that most 
pond owners have never tested their ponds, and water quality problems are usually only 
detected after they cause a problem.
Both problems - algal blooms in large lakes and sewage effluent discharge in small water 
bodies - can be mitigated with effective water monitoring techniques [3], [8], [9]. Real-time 
information on water quality is very important for predicting major pollution problems 
in lakes and directing active management of  the issue so as to ensure our water resources 
long-term availability [8].
 
However, Contemporary water monitoring has its own set of  complex issues. Most water 
quality issues arise from diffuse non-point sources like agricultural runoff  from farms 
and animal feeding lots, the same type of  pollution that is widely believed to cause Cy-
anoHABs in Lake Erie. Compared to contaminants that come directly from point sources 
(e.g. effluent discharge from one sewage treatment center),   agricultural runoff  is harder 
to monitor, evaluate, and control primarily due to the fact that the emission of  pollutants 
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The following concepts detail the important terminol-
ogy and framework, in the context of  our research, to 
be used to the experiment:

Design and Development

With water crises in places all over the United States, 
from the foothills of  Appalachia to the urban spaces 
of  Compton, California, there is a need not only for 
reliable water monitoring but also for an affordable 
system that cash-strapped municipalities can afford. 
Thus, in creating this water monitoring system, we have 
stressed cost-affordability and usability as our mo-
bile water monitoring system costs under USD 1,500 
compared to other stationary systems that start around 
USD 5,000 and require human fieldwork which is eco-
nomically infeasible for providing enough number of  
data points over long periods of  time.
As water monitoring devices are expensive, we wanted 
to keep the main design of  the autonomous robotic 
device as modular and inexpensive as possible. For our 
flotation devices, we used two sealed high density poly-
ethylene pipes as they are biodegradable and relatively 
inexpensive. Through calculations on the displacement 
of  the flotation devices, we determined that the upper 
limit on the mass of  the robotic device was about 25 
pounds or 11.4 kilograms - this meant that we could 
carry an additional 8 pound (3.6 kilograms) payload 
that could be used to do additional testing.
This weight load is possible as the raft is formed with 
lightweight aluminum extrusion rods joined together 
using L-brackets and stainless steel screws and nuts 
which are all available at most hardware stores.
For propulsion, the robotic device used two 22 Watt 
hexagonal-shaft motors, each connected directly via 
shaft to a custom-designed, 3D printed paddle wheel 
comparable or cheaper in cost to other alternatives in 
the market. The motors were controlled by an afford-
able, multi-interface hardware controller connected to 
a smartphone, which had GPS capabilities for auton-
omous navigation and cellular capabilities for data 
upload and manual control.
(See Figure 1 for Robot Design in Action)
In order to maximize uptime and reduce the need for 
human intervention to do charging, a 50 Watt solar 
panel is attached to the top of  the robotic raft for 
powering the onboard electronics and motors. We ini-
tially researched a tilt mount to maximize solar output. 

from a non-point source is highly variable along short 
periods of  time. With considerable variation even on an 
hourly basis, single measurements are not able to char-
acterize the water quality and quantify pollution levels 
over time. Thus, frequent samples in multiple areas are 
needed for accurate representations and models of  wa-
ter-body pollution.
It is here that we see the drawbacks of  current water 
monitoring systems. Standard water quality testing 
options are generally heavily reliant on human fieldwork 
to gather test samples and ex-situ lab testing. Frequent 
sampling at multiple areas becomes a massive logistical 
and financial problem due to the human factor involved 
and the need to send samples to off-site laboratories for 
further processing introduces a considerable time delay. 
For these reasons, standard methods fail in helping to 
monitor, evaluate and model non-point sources of  pol-
lution in real time.
Current research has tried to address these shortcom-
ings. Solar-powered buoys have been created that con-
tain water monitoring sensors for temperature and dis-
solved oxygen among other factors. To combat the fact 
that buoys are stationary, mobile remotely-controlled 
boats with similar sensors have also been developed 
that are able to operate for short periods as opposed to 
continuous, long-duration deployment. However, these 
systems are expensive, costing about USD 6,000 - 7,000 
for the buoys and USD 30,000 for other stationary, au-
tomated water monitoring systems.
In this project, we seek to expand on the work of  Dun-
babin et. al. from the University of  Queensland [10] and 
create an affordable solar powered autonomous raft for 
water monitoring of  non-point and point sources of  
pollution. We stress affordability by building our robot 
with components one can easily find in a hardware store 
all for under USD 1,500 by using a design that is modu-
lar and makes the robot easy to transport and service.
In what is a clean break from past research, we focus 
on ensuring our water-monitoring system can innova-
tively communicate its results by building a web client 
to visualize our collected data and developing a natural 
language parser interface so that users of  all education-
al levels can intelligently query for specific pollution 
details.
We also lay out a framework for predictive analysis of  
our data and future plans of  study involving dynamic 
water treatment.
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and Longitude coordinates of  the robot position. The 
compass sensor capability of  Android is also employed 
by using the pre-built phone magnetometer to return 
compass readings that determine orientation.
The autonomous navigation algorithm uses the dimen-
sions of  a given water body to generate waypoints that 
provide a maximum traversal of  the area. This provides 
sufficient sampling variability to eventually yield the 
most complete picture of  the water quality that can 
be used for further analysis. The waypoints are placed 
in an order relative to the initial robot position, and 
their positions are used to divide the lake into various 
attention sub-regions (Fernandes et al) [11]. Next, a 
minimum length tour i.e., the shortest overall path that 
allows the robot to cover each region, is constructed 
(Branson et al) [12]. A segmented sequence is created 
with the ends of  each segment corresponding to the 
relative waypoint order. For each segment, its length 
and its angle measurement (assuming the standard Car-
tesian coordinate plane) are calculated. The algorithm 
then makes use of  the encoder capability of  the raft 
motors, which generate a specified number of  electri-
cal signals for every rotation of  the paddle wheel. A 
one-to-one correspondence is thus established between 
the distance and the encoder ratio to determine the 
number of  paddle revolutions, and its corresponding 
encoder value needed to reach the waypoint destina-
tion. This allows the robot to move freely and with 
minimal interference.
Proportional-Integral-Derivative Control, a con-
trol-loop feedback mechanism system, is also used to 
tune an optimal motor speed consistent with the en-
coder readings (Pereira) [13]. This creates a navigation 
system independent of  battery life to generate the max-
imum positional accuracy. Finally, the prior calculated 
angle is transformed into a yaw rotational value that the 
robot needs to obtain to be able to move exactly along 
the line segment. During travel, the GPS coordinates 
of  the current robot position are compared with the 
end waypoint to act as a calibration check system (Bur-
gard et al) [14]. Based on the real-time encoder count 
value, the true GPS position that preserves the correc-
tion direction (along the line segment) and orientation 
(same as initial angle) is calculated. This is then com-
pared to the actual data values, and the robot is made 
to move accordingly until the margin of  error reaches 
an acceptable tolerance level.
(See Figure 4 for Generated Path Example)

However, we ultimately decided against this due to sta-
bility concerns and the need for the robotic device to be 
oriented such that the panel faced true south at all times. 
For regulating and storing energy created by the panel, 
the robot device uses a charge controller and 200-watt 
hour lithium- phosphate battery. Although the parts that 
form the solar power system (panel, charge controller 
and battery) are the most expensive components of  the 
robotic raft, they add critical functionality for the robot 
to have long-term use (See Solar Panel, Power and Bat-
tery Considerations for more information).
 
Existing water monitoring systems derive most of  their 
cost from their sensors and sample testing, so in our 
goal to develop an affordable water monitoring solution 
we focused on adding water sensors that could give 
good all-around insight into the environment but still be 
inexpensive cost-wise. In its current configuration, the 
autonomous robotic device uses a modified fish tank 
sensor that is able to detect ammonia, pH, water tem-
perature and light intensity (See Systems Applications 
to Environmental Problems for further environmental 
insight said parameters can give). This sensor is able to 
measure free ammonia through detecting the degree of  
color change in a specially designed slide that is period-
ically exposed to the surrounding water. The readings 
are reliably accurate and though the slide needs to be 
replaced every month or so, it is relatively inexpensive - 
costing about 10 USD at the time.
The readings from the sensor are extracted and up-
loaded by a Raspberry Pi micro-computer (See Data 
Management and Access for more details) which can 
theoretically interface with any sensor that has a USB 
connector, making the robotic device modular and al-
lowing for future sensors to be added to analyze the lake 
(See Figure 2).

Autonomous Navigation

The system is equipped with two Motorola G5 Plus 
Android phones: One on the robotic raft, and one with 
the client operator. These phones are connected through 
single radio hop Wi-Fi Direct communication, which 
allows wireless connection to be established without 
the need of  a wireless access point. This dependency 
allows the usage of  Global Positioning System Location 
Tracking on the onboard phone to obtain the Latitude 



      JUROS | 39

to rotate, and in what direction, to get back on track to 
the original created path. The distance and orthogonal 
velocity values calculated are linearly combined with 
P and D coefficients (tuned by Experimental Testing) 
to give a total angle of  rotation:  Total = P * Distance 
+ D * Orthogonal Velocity (P: Proportional to Error, 
which in this case is the distance to the original path, 
D: Derivative: Rate of  Change of  Error, which in this 
case is how fast the robot is deviating away from the 
path, i.e., the velocity). Roughly, the Distance will tell 
us how much of  a numerical angle to turn, and the 
Velocity’s Direction/Magnitude will help us to control 
overshoots/undershoots in this rotation.
After this control, the robot gets back on course, and 
continues in the straight line path again, until the next 
time the GPS Updates. At that point, the PD will take 
effect again for course correction. This process will 
continue until the final target has been reached.
What follows is a tabulation and graphical representa-
tion of  the autonomous navigation algorithm ()., First, 
the GPS location of  each waypoint is recorded, and 
for each successive destination pair, the needed angle 
rotation, and length of  travel path are also calculated. 
(See Table 1)
Next, the periodic check value is documented and 
compared it to the actual robot position. 
(See Table 2)
Finally, the appropriate numerical values are graphically 
represented on the coordinate axes, which are superim-
posed onto the region of  detection.
(See Figure 4)

Computer Vision

To ensure the avoidance of  all obstacles during robot 
motion, autonomous navigation is supplemented with 
a Computer Vision Algorithm, which runs using the 
Open Source Computer Vision Library. The develop-
ment of  the algorithm followed two main steps: Image 
and Real-Time Video Detection.
The first focus was on tracking various types of  stat-
ic images to help us to identify the most pertinent 
features that are needed for a comprehensive object 
understanding. Images chosen were applicable to the 
robot’s scenario, and included boats, wild animals, 
bunched seaweed, etc. Implementing the Mat Contain-
er feature of  OpenCV, allowed for obtaining access to 
the raw image pixelation data, and used the resulting 

Implementation of  PD Course Correction Control

To ensure that our robot, in its autonomous operation, 
stays on course as it moves from target to target, we 
have implemented a form of  PD (Proportional-Inte-
gral-Derivative) Control System.
First, before navigation truly begins, the robot, using 
a GPS Location Service, is able to extract the latitude 
and longitude of  its starting position (known as initial 
position in the data section). Then, a timer is started 
to eventually calculate velocity (detailed below). Next, 
based on the latitude and longitude of  its target posi-
tion, a straight line path (hypotenuse) is drawn from the 
initial to target, and the corresponding azimuth angle (0 
Degrees being North, and rotating counter-clockwise) is 
calculated based on the trigonometry of  the right angled 
triangle. The robot takes its own azimuth (obtained 
through the magnetic sensor of  the on-board Android 
Phone), and rotates until it reaches the desired azimuth 
of  the path, plus or minus a threshold of  5 degrees 
(PI/36 Radians).
Next, the robot sets both of  its motors to a power of  
0.25, and continues straight along the specified path. 
This is where the PD Course Correction comes into 
play. We track two locations: Previous Location which 
is the latitude and longitude of  the robot before the 
GPS gives an update, and Current Location: The most 
accurate location of  the robot after the update from the 
GPS Location service. Initially, Previous Location and 
Current Location are the same, since the GPS Measure-
ments have not changed.
Once the location gets updated by the GPS, Previous 
Location is no longer equal to Current Location. At 
this point, we calculate two things for our PD Algo-
rithm. First, we calculate the length of  the perpendicular 
distance from the robot’s most updated position to the 
straight line hypotenuse connecting the initial position 
to the final position (initially calculated from the first 
rotation). This is accomplished using trigonometry and 
vector projections, as shown in Figure 8. Also, as soon 
as the location is updated, the timer that we set in the 
original rotation is stopped, and the velocity vector of  
the robot motion is calculated using the displacement 
vector and the elapsed time. Using the same principles 
of  trigonometry as before, the orthogonal velocity 
(velocity in the direction of  the original path) is also 
calculated.
These two metrics combined tell the robot how much 
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solar panel, as this battery is significantly lighter than 
lead acid batteries, has a high number of  charge cycles, 
is non-toxic unlike Lithium-ion or lead acid batteries 
and less flammable than Lithium-ion batteries. With 
an estimated 5,000 charge cycles the battery would last 
about 10 years, making it a durable, sustainable and 
environmentally friendly option.
Based off  of  conservative estimates, we calculated that 
the robotic device would have an instantaneous 50 
Watt power draw when moving. So, in choosing bat-
tery sizing, we computed that a 200 Watt Hour battery 
would give enough energy for the robot to move inter-
mittently through the day.
 
Based on size and weight limitations, a 50 Watt solar 
panel was integrated into the design with an assumed 
6 hours of  sunlight a day during monitorable months. 
Because the robotic device has low amperage draw, the 
solar panel is connected to the battery via a 30 ampere 
Pulse Width Modulation (PWM) charge controller to 
ensure optimum performance at lower cost. The PWM 
charge controller can power a USB device and the bat-
tery, giving added flexibility. Since all the loads are DC 
powered and can be directly powered by the battery, 
there is no need for an inverter.
The charge controller can also be fitted with a Blue-
tooth module in the future to monitor the energy out-
put from the solar panel for educational purposes.

Data Management and Access

In order to effectively collect and act on data from the 
autonomous robotic device, data must be exchanged 
between it and the servers. The autonomous robotic 
device is equipped with a Raspberry Pi, a small com-
puter running a Linux-based operating system. The 
Raspberry Pi contains a variety of  General Purpose 
Input Output pins, four USB ports, and an RJ45 port 
to interface with the USB-connected water sensor. The 
script utilizes the Message Queue Telemetry Transport 
(MQTT) protocol to send data to the server at frequent 
intervals. MQTT is a lightweight transport protocol for 
Internet of  Things (IoT) devices to stream data to a 
server. RabbitMQ converts MQTT messages into Ad-
vanced Message Queueing Protocol (AMQP) messages. 
A service written using JavaScript reads messages from 
the alert queue, and determines if  they match alert 
thresholds for pollution, as defined by the users. When 

numerical values as a precedence order for detail priori-
tization (Baksheev et al) [15]. This led to a narrowing
down on four basic key factors: Degree Presence of  
each of  the 7 main colors (White, Red, Green, Blue, 
Yellow, Brown, and Black, plus any combined shades), 
concentration of  the edge pixels on the object boundary, 
length of  the substance (estimated using the spanned 
distance of  the best geometric figure approximation), 
and the standard deviation error of  the generated shape 
to the actual physical quantity in the horizontal and ver-
tical directions (Bloisi et al) [16].
Next, the process of  detection itself  was tuned to apply 
to a traversal of  a lake. Standardizing the images using 
RGB-Grayscale conversion ensured that the system was 
illumination-independent (Emami) [17]. As such, the is-
sue of  limitation of  sample collection to daylight hours 
was bypassed.
In addition, the software also included the ability to ap-
proximate the edges of  imperfect instances of  objects. 
This is accomplished through the Hough Transform, 
which uses a parametric coordinate system to output 
a best-fit edge curve based on read physical proper-
ties (Barngrover) [18]. Through this overestimation, a 
tolerance level is generated for the raft navigation that 
provides ample room for maneuverability. After laying 
out this preparatory groundwork, the process transitions 
to video. From the OpenCV GPU module, the Android 
mobile device on the robot becomes capable of  stabi-
lizing streaming video and breaking the reception down 
into an individual frame-by-frame sequence. The same 
metrics from the images are employed in the video anal-
ysis by essentially taking each frame as its own separate 
quantity. The phone is positioned per a landscape orien-
tation and installed at the front of  the robot to maxi-
mize the viewing range of  its inbuilt camera. Whenever 
a pressing obstacle, in terms of  size and threat level, is 
detected, the robot stops and begins a counterclockwise 
rotation until the algorithm deems its orientation as safe 
to proceed.
In the future, we plan to use techniques from Mathe-
matical Morphology and dilate specific goal pixels to 
continue to enhance accuracy (Lu and Xie) [19].
(See Figure 7)

Solar Panel, Power and Battery Considerations

Our robotic device uses a 200 Watt Hour Lithium 
Phosphate battery for storing energy from the 50-watt 
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With these interfaces, our water monitoring system can 
also have applications in environmental education. Stu-
dents can learn about water pollution, and apply water 
pollution concepts to our web application to complete 
projects. For example, students could use heat maps 
combined with statistics extracted via NLP to explain 
algal blooms and detect areas with potential sewage 
contamination.
Ensuring reliable access to data is a requirement for 
significant research to be performed. As such, we have 
taken a multi-cloud approach to reliability. Microsoft 
Azure is our primary cloud provider. Microsoft Azure 
is an automatable, secure, and reliable cloud platform 
with data centers across the United States retrieving 
services that run on a Kubernetes cluster. Kubernetes 
is a server and cluster orchestration tool which enables 
us to easily deploy and scale applications across mul-
tiple servers with auto-scaling rules. The cluster will 
automatically run the number of  services required to 
meet current demand. However, in the event of  failure 
in Microsoft Azure, we have an identical Kubernetes 
cluster running on Amazon Web Services (AWS). De-
vices will automatically send data to AWS if  Azure is 
unreachable, ensuring valuable data is not lost.

   
Research Methods

The methods conducted for our two separate experi-
ments are detailed as follows:

Computer Vision

i) Accuracy
To test the accuracy of  the Open-CV algorithm (spe-
cifics of  which are detailed in the introduction), ten 
images (See images 8 to 18 in the Figures document) 
were selected that pertain to possible scenarios that our 
robot could encounter during its time in the body of  
water, such as rocks, debris, animals, etc. Each image 
was placed a constant distance of  8 inches in front of  
the onboard robot camera. For each trial, the max-
imum size of  the dimensions of  the pixel rectangle 
created by the detection system was recorded. Varia-
tions within the generated sizes were noted, as well as 
any failures/irregularities in the detection. Note that, 
sometimes, the goal is for the robot to fail in the rec-

a threshold is met, the alert service sends an email to the 
associated email account. Another service, also written 
in JavaScript, reads messages from the processing queue 
and writes them to a database. In addition, as it is essen-
tial for researchers and the general public to easily access 
water pollution data, we also developed an innovative 
web client interface for communicating collected data. 
To visualize the data, a heat map displays pollution sta-
tistics made up of  pH, temperature, and ammonia levels. 
The user can utilize a slider to see historical pollution 
levels and trends.
(See Figure 2)

 By using multiple services, alerts can be sent at the 
same time data is being saved, removing a bottleneck 
present when several devices report statistics at once.
(See Figure 3)
Additionally, users can obtain point data using a Natu-
ral Language Processing (NLP) interface. The user can 
type in a question about specific pollution factors, and 
the NLP system will process the request and find rele-
vant data for the user. The language processing system 
extracts keywords, for example temperature, and then 
analyzes temperature data for the date(s) provided to 
return data to the user. If  a user does not provide a date 
or time, the parser can extract keywords that indicate 
tense and relative date (what will be, what was) to deter-
mine the date(s) to query for. And lastly, if  a user does 
not indicate a specific pollution factor in their query 
and instead asks about general water quality, the parser 
will return a water quality score determined by internal 
calculations on the central tendency of  the pollution 
metrics being measured.
(See Figure 5)
Both the heat map and NLP interface use a Representa-
tional State Transfer (REST) interface to communicate 
with and obtain data from the servers. Gaining com-
posite data is useful, but is no substitute for raw data, 
especially for research applications. In the near future, 
researchers will be able visit a dedicated research por-
tal and request to download data. The portal uses the 
same REST interface as the heat map to retrieve data. 
Researchers will simply check boxes to select which data 
to access, and upon submission of  a request, a retrieval 
service will email researches data. By using a standard-
ized REST interface, researches can also directly que-
ry for data instead of  using a portal, opening further 
expansion opportunities.



 42 | JUROS

target location, which is dependent on the concentra-
tion of  pollutants in the water. To do this, the robot 
first starts in an initial position, rotates until it reaches 
the angle corresponding to the target position (Based 
on the azimuth reading of  the Moto G5 Magnetometer 
sensor Android Phone). Then, it continues along this 
straight path. Every time the location updates on the 
GPS, a ‘Turn by PD’ function is executed to ensure 
that the robot re-orients itself  to align on the initially 
calculated path. In this experiment, it is sought to test 
the accuracy of  this function.
A land-based test was chosen for this experiment as it 
allows more control in robot positioning and data col-
lection. Three initial locations were chosen, with a con-
stant final location for each trial. For each location, we 
ran exactly one iteration of  the PD Course Correction, 
occurring when the GPS first updated on the Android 
Phone. During the PD Turn, the change in the azimuth 
heading of  the robot (that is, its orientation) is record-
ed, as well as the length of  the perpendicular vector 
that separates the initial correct trajectory of  the robot 
(calculated right after the autonomous program is 
initialized) and the robot’s deviated trajectory obtained 
in the time intervals between location updates. The 
angle of  separation between these two directions is 
also calculated and displayed in our data table.  Finally, 
after the PD modification has run its course, the total 
displacement of  the robot, from the initial position to 
the location that the robot’s most current position just 
after the PD Control, is calculated and expressed as a 
matrix containing both the latitude and longitude com-
ponents. And, this updated location is also placed in 
the table as a latitude and longitude pairing. See Figure 
8 for a graphical visualization of  this course correction 
experiment.
The objective of  this experiment was to be able to nu-
merically quantify all of  the values associated with our 
PD Control (See diagram in the images section regard-
ing PD vectors/angles). And, based on the data gath-
ered, a conclusion can be made as to whether or not 
our algorithm was accurate enough to ensure constant 
travel along the correctly calculated path (See results/
conclusion section).

   

ognition of  a specified object. Consider the example of  
lily-pads. In a given lake, there could be numerous lily-
pads, ranging from the single to double and even triple 
digits. It is not worthwhile for the robot to detect and 
turn away from these plants at every possible opportuni-
ty, as it will reduce efficiency in motion. The best option 
is for the robot to continue along its path since contact 
with lily-pads will not harm its mechanical structure. 
Our selected images also encompass this aspect of  de-
tection. If  there is a huge deviation for any of  the image 
results from trial to trial, a brief  explanation is written to 
explain why this might have been the case.

ii) Orientation
To test the ability of  the robot to modify its orientation, 
the same ten images used in the accuracy test (See imag-
es 8 to 18 in the Figures document) are placed in front 
of  the onboard robot camera (through the Moto g5 Plus 
Android Phone), at a constant 8 inches away. For each 
image, three metrics are recorded as part of  our data. 
First, a stopwatch is set as soon as the Computer Vision 
Detection Program is initialized, and the time taken for 
the phone to output a reading detailing the object (either 
the dimensions of  a pixel size rectangle or a failure to 
recognize) is recorded. Next the motion of  the robot 
based on the initial detection in step 1 is noted. After 
each detection, the robot can enter two possible states: 
It can either go from two wheels spinning to only one, 
which implies that it is has deemed the detected object 
as a harm and is turning away from it, or it retains the 
state of  two wheels spinning, which implies that it is 
going along its current path after having deemed the 
object a non-hazard to motion. Finally, after this second 
step, it is documented whether or not the robot action 
was appropriate given the circumstances presented by 
the image. For example, if  the image was of  rocks in the 
water, the desired motion is to turn to ensure that there 
are no crashes. However, if  the image was of  shrubs in 
water, there is no need for the robot to rotate, and it can 
continue going forward on its straight path. All of  these 
values are recorded, and brief  explanations are given for 
any irregularities.

PD Course Correction Control

The intent of  the PD Algorithm is for the robot to 
accurately move from an initial location to a specified 
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angle modification, the azimuth heading was correctly 
changed to a value that aligned with the initial creat-
ed path, with minimal error.  No matter how much 
deviation was done on the robot’s path through man-
ual displacement and rotation, the angle change was 
correctly able to be made, allowing the robot to con-
tinue on the correct path to reach the target position. 
In the first trial, it was noticed that the tested P and D 
coefficients (initially P = 1000, D = 1000) had room 
for some improvement. While the robot was able to 
move to the general direction of  motion through the 
course correction, since the two coefficients were quite 
large, the robot would quickly rotate to be within the 
threshold specified in our code and not slow down 
enough as it neared the required azimuth, leading to 
an accurate, but not precise, turn. To rectify this minor 
issue, in the second and third trials, the P and D values 
were lowered, finally settling on P = 891, and D = 928. 
This gave us, based on the visual observation, the most 
accurate motion corrections.

   
Conclusion and suggestions for future re-
search

Conclusion

The conclusion that can be made from this experiment 
is that our robot is a viable alternative to existing water 
monitoring systems, in terms of  affordability, autono-
mous control and ease of  navigation, and accuracy and 
precision in data control. Going forward, the aim is to 
expand upon our system and make it fully robust in all 
three stages of  the process: autonomous navigation, 
data collection, and server transmission.

System’s Applications to Environmental Problems

a)	 Point Sources

This system has potential for monitoring and evaluat-
ing point sources of  pollution through its many on- 
board sensors. Current detection systems are stationary 
and therefore require an expensive group of  sensors to 
obtain a metric for the entire lake quality from just one 
sample region. Our robot uses only one main sensor 
package with the ability to detect multiple contami-

Results

See the separate figures document for specific data val-
ues tabulated over the course of  the experiment. (Specif-
ically, Tables 3, 4, and 5)

Computer Vision Accuracy

Overall, we see that our OpenCV detection software 
was accurate 44 times out of  50 total trials (5 attempts 
for each image, with 10 images in total). This is an 
accuracy rate of  88 percent, and is ideal for the testing 
stage of  our robot development. It is also almost ready 
for on-field usage in the water. The few discrepancies 
in recognition were either caused by over-saturation of  
color in the RGB to Grayscale conversion, or distortion 
caused by the reflection of  sunlight rays onto the water, 
which modified the coloration values as perceived by the 
vision. To rectify this, the coloration algorithm needs 
to be modified slightly to account for the cases where 
extreme shades of  color are present. In addition, the 
orientation of  the camera needs to be angled slightly up-
ward so that there is no longer interference by the waves 
in the water in influencing the robot’s decision making.

Computer Vision Orientation

For the ten images put to test the robot’s decision 
making ability, it performed the appropriate action (i.e., 
turning away for the object or going along the intended 
path) a total of  9 times out of  10. This is an accuracy 
rate of  90 percent, slightly better than the accuracy 
test, and still ideal for the testing stage of  our robot 
development. The one error in motion came from the 
robot on-board camera focusing on another prominent 
color, that of  the vibrant water waves, as opposed to the 
sharks, fish, and whales that were somewhat blending 
in with the water. As such, the CV only identified the 
presence of  water and failed to recognize the aquatic life 
altogether. To rectify this in the future, we need to mod-
ify the algorithm in the cases where the object is fully or 
partially submerged in the water, so that the coloration 
process can account for the effect of  the color of  the 
water somewhat masking the color of  the objects.

PD Course Control

It can clearly be seen that, in all three cases of  the 
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time, a trait considered critical for future water mon-
itoring systems. This additional flexibility to quantify 
non-point sources allows our water monitoring system 
to tackle pertinent problems in water quality.
Problems in the Great Lakes such as CyanoHABs, 
which are nurtured by warm water and nutrients from 
agricultural runoff, can be effectively modelled through 
use of  the onboard temperature and ammonia sen-
sors (refer to concepts of  affordability). Ammonia is 
especially useful in detecting nutrient runoff  as most 
nitrogen-based fertilizers either contain ammonia or 
turn into ammonia through the nitrogen cycle and 
most phosphate-based fertilizers consist of  di-ammo-
nium phosphate which breaks down into phosphate 
and ammonia after being released.
Not only as a cause for CyanoHABs, non-point pol-
lution such as nutrient runoff  is also a dominant 
problem for local watersheds [20]. The United States 
Environmental Protection Agency (USEPA) has for 
the past several decades’ ranked nutrient pollution as 
one of  the top threats to U.S. streams and the United 
States Geographical Survey (USGS) has prioritized 
comprehensive national studies to assess nitrogen and 
phosphorus content in local streams and groundwater 
[21].
With major focus on national-scale water issues such as 
Great Lakes algal blooms, important local water issues 
may be overlooked. As our water monitoring system 
is affordable, costing under USD 1,500 and requiring 
no technical background to deploy, local municipali-
ties may find this a useful technology for monitoring 
diffuse and potentially harmful runoff  into their water 
bodies and sources.

c) Public Health and Early Warning System Potential

The data our robotic device collects is suitable for 
determining public health considerations as the pol- lu-
tion factors the robotic devices sensor can detect - pH, 
ammonia and water temperature - are useful in gaug-
ing environmental health. Any extrema in their values 
would indicate dangerous consequences for human 
and wildlife health with at-risk groups such as children, 
pregnant women, people with chronic disease and the 
elderly being especially susceptible.
pH is important as fish and other marine biota have 
a very specific pH tolerance - low pH inhibits shell 
growth, fertility and at very low levels can cause fish 

nants at once.  Due to its mobility, there is no need to 
use a network of  many sensors as our robotic device is 
able to relocate this package to many points of  a water 
body on time-scheduled intervals. This results in ease 
of  deployment and allows regulatory agencies to make 
impromptu, discreet checks on suspects of  point-source 
pollution Moreover, the water quality of  the entire body 
is determined at a much more affordable rate.
Since our robotic device contains a pH sensor, it is 
possible to detect pollution from improperly managed 
mining areas by testing a nearby water body for unusu-
ally low pH (acidic) levels. At the other extreme, high 
pH levels can indicate that there is wastewater contam-
ination that contains detergents, soaps and other toxic 
chemicals.
In areas with negligible agricultural and municipal run-
off, the presence of  ammonia and other nitrogenous 
compounds is also a strong indicator of  sewage contam-
ination as sewage treatment centers do not remove urea, 
which later decomposes into ammonia, from wastewa-
ter.
This added ability to do wastewater detection gives our 
water monitoring system an extra dimension in ear-
ly warning and detection of  cyber-terrorism as water 
treatment centers have been listed as prime targets of  
cyber-terrorism by the United States Environmental 
Protection Agency due to the fact that an unauthorized 
discharge of  untreated sludge could cause catastrophic 
change to our water resources.

b) Non-Point Sources

As mentioned before, non-point sources have variation 
in their emission of  pollutants over time which makes 
it relatively hard to quantify and evaluate their impact 
on the surrounding environment with current methods 
involving one-time monitoring. Non-point sources are 
also diffuse and non-homogeneous, making standard 
methodologies that use a network of  floating sensor 
stations economically impractical over large areas.
The water monitoring system put forth is able to solve 
these problems of  infrequent sampling on large test ar-
eas as it contains only one continuously reporting sensor 
package that can migrate around to multiple user-spec-
ified testing points in a water body. Thus, there is less 
overhead due to the fact that there is no need to set up 
multiple different testing sites and there is added ability 
to do continuous water monitoring over long periods of  
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casts and seasonal patterns, we would use a Fourier Se-
ries to represent the data. The Fast Fourier Transform 
would allow us to extract the sinusoidal waveforms 
of  our measured metrics. Taking the high-frequency 
signals, we could determine short-term, daily patterns. 
Similarly, we would use the low-frequency signals for 
seasonal to yearly changes. Furthermore, we plan to ex-
trapolate any trends we would discover from our model 
and use them to predict future conditions, adding extra 
functionality to an early warning system.
We also have plans to expand our water monitoring 
system to include dynamic water treatment through 
automated floating beds of  beneficial native Ohio 
wetland plant species. These species are known for 
their ability to absorb excessive nutrients such as phos-
phates, nitrates and iron from a water body. A research-
er from Ontario, Canada, has developed floating beds 
which contain rows of  cattails with their roots exposed 
to the water [22]. He has had success cleaning up cer-
tain water bodies by leaving these beds out at predeter-
mined locations for months at a time and then cutting 
off  any growth in the cattail plants afterward. We plan 
to expand on this idea by using beds of  beneficial 
native Ohio wetland plants to clean water and making 
it into a connected network of  solar powered, autono-
mous devices (similar in function to that of  our current 
robotic device) that move to optimum positions in a 
water body based off  of  analysis done by data collect-
ed by our current water monitoring system.
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death. Similarly, on the other side of  the scale, higher
pH (i.e. basic) water can result in skin and gill issues and 
fish death in the presence of  ammonia.
Ammonia, as well as other forms of  nitrogen, in high 
levels can cause harm to the environment by acidifying 
the soil and decreasing biodiversity. Ammonia is also 
dangerous to pregnant women and children and with 
prolonged exposure can cause burning of  the eyes, ears, 
throat, and lungs.
Extreme values in temperature are detrimental to fish 
as certain species have very specific tolerance levels. In 
general, warmer water from runoff  reduces dissolved 
oxygen in the water body which results in reduced 
growth, excessive respiration rates, and lower survival 
rates in fish population. For communities that rely on 
fishing as a source of  recreation, income, or both, ex-
treme water temperatures are thus problematic.
And with crises like the Flint Water Crisis garnering na-
tional attention, there is clearly a need not only for pub-
lic health testing of  the pollution parameters described 
above, but also for reliable early warning systems. For 
any early warning system to work, continuous monitor-
ing of  the local water bodies must be done. The water 
monitoring system we have put forth has this capabil-
ity due to the autonomous robotic device being solar 
powered, resulting in minimal downtime for charging or 
refueling.
Communication of  data is also a critical feature of  early 
warning systems. This is where the water monitoring 
systems web client is particularly useful, as its natural 
language parser and interactive heat maps are useful not 
only for environmental education but also for members 
of  the general public who want intuitive, up-to-date 
information about local water quality.
By combining the current web client with text-message 
warnings from the server, our water monitoring system 
would be able to communicate real time water quality 
data to the public in an innovative way.

Future Research Plans

Once enough data has been collected, we plan to do 
time series analysis on our collected data to identify 
three predictive metrics for each collected pollution 
factor: long term trends, daily forecasts, and seasonal 
patterns. For the long term-trends, we would employ a 
linear regression model through a Least Squares Regres-
sion Line to maximize accuracy. For both the daily fore-



 46 | JUROS

[12]	 P. Tokekar, E. Branson, J. V. Hook, and V. Isler, “Coverage and 
active localization for monitoring invasive fish with an autonomous boat,” 
International Symposium on Experimental Robotics, 2013.
[13]	 A. A. de Menezes Pereira, “Navigation and guidance of an auton-
omous surface vehicle,” PhD thesis, University of Southern California, May 
2007.   
[14]	 R. Kummerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard, 
“Autonomous robot navigation in highly populated pedestrian zones,” Journal 
of Field Robotics, vol. 32, 2014.
[15]	 K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-time 
computer vision with OpenCV,”
Communications of the ACM, vol. 55, no. 6, pp. 61–69, 2012.
[16]	 D. D. Bloisi, L. Iocchi, A. Pennisi, and L. Tombolini, “ARGOS-ven-
ice boat classification,” in 2015 12th IEEE International Conference on 
Advanced Video and Signal Based Surveillance (AVSS), IEEE, Aug.  2015.  
doi:  10.1109/avss.2015.7301727.  [Online].  Available:  https://doi.org/10.1109/ 
avss.2015.7301727.
[17]	 S. Emami and V. Petrut, “Facial recognition using OpenCV,” Journal 
of Mobile, Embedded and Dis- tributed Systems, vol. 4, pp. 38–43, 2012.
[18]	 C. M. Barngrover, “Computer vision techniques for underwater 
navigation,” Master’s thesis, University of California, San Diego, 2010.
[19]	 G. Xie and W. Lu, “Image edge detection based on OpenCV,” 
International Journal of Electronics and Electrical Engineering, vol. 1, no. 2, pp. 
104–106, 2013.
[20]	 W.Grayman, R. A. Deininger, and R.M. Males, Design of Early 
Warning and Predictive Source Monitoring Systems. Awwa Research Founda-
tion and American Water Works Association, 2001.
[21]	 S. Ahuja, Monitoring Water Quality: Pollution Assessment, Analysis, 
and Remediation. Elsevier B.V., 2013.
[22]	 M. Curry, “Floating Water Filters,” The Western Producer, Glacier 
Farm Media, 2017.

References
[1]	 C. Portis-Hurlbert, “Algal blooms at lake erie,” Kent State University 
Digital Commons, 2016.

[2]	 A. M. M. et. al, “Record-setting algal bloom in lake erie caused by ag-
ricultural and meteorological trends consistent with expected future conditions,” 
Proceedings of the National Academy of Sciences, 2013.
[3]	 USGS, The science of harmful algal blooms, https://www.usgs.gov/
news/science-harmful-algae- blooms, Accessed on 2018-11-18, Oct. 2016.
[4]	 N. I. of Environmental Health Sciences, Harmful algal blooms, https://
www.niehs.nih.gov/health/ topics/agents/algal-blooms/index.cfm, Accessed on 
2018-11-18, 2018.
[5]	 E. B. et. al., “Marine harmful algal blooms, human health and well-
being: Challenges and opportunities in the 21st century,” Journal of the Marine 
Biological Association of the United Kingdom, 2016.
[6]	 B. Petrie, R. Barden, and B. Kasprzyk-Hordern, “A review on emerg-
ing contaminants in wastewa- ters and the environment: Current knowledge, 
understudied areas and recommendations for future monitoring,” Water Research, 
vol. 72, pp. 3–27, 2014.
[7]	 P.  Extension, Pond ecology, https://extension.psu.edu/pond-ecology,  
Accessed  on  2018-11-20, 2013.
[8]	 J. L. Graham, N. M. Dubrovsky, and S. M. Eberts, “Cyanobacterial 
harmful algal blooms and u.s. geological survey science capabilities,” U.S. Geo-
logical Survey Open-File Report, 2016.
[9]	 D. B. Baker, “Regional water quality impacts of intensive row-crop 
agriculture: A lake erie basin case study,” Journal of Soil and Water Conservation, 
vol. 40, no. 1, pp. 125–132, 1985.
[10]	 M. Dunbabin and P. Smith, “High fidelity autonomous surface vehicle 
simulator for the maritime robotx challenge,” IEEE Journal of Oceanic Engineer-
ing, 2018.
[11]	 L. C. Fernandes, J. R. Souza, P. Y. Shinzato, and G. Pessin, “Intelli-
gent robotic car for autonomous navigation: Platform and system architecture,” 
Proceedings - 2012 2nd Brazilian Conference on Critical Embedded Systems, 
CBSEC 2012, 2012.



      JUROS | 47



 48 | JUROS



      JUROS | 49



 50 | JUROS



      JUROS | 51



 52 | JUROS




