
JUROS Science and Technology

INTRODUCTION
Background

Web pages are often generated dynamically by
combining static templates with dynamic content. Be-
cause the templates are static and changed only by the
website staff, website administrators can reason that the
templates produce web pages with desired appearanc-
es and behavior. However, website administrators may
not fully know how the behavior and appearance of web
pages produced by their templates may be affected by
incorporating dynamic content. In some cases, the re-
sulting web page also produces desired appearance and
behavior. In other cases, however, it may cause visitors’
web browsers to execute code the web administrators
consider undesirable, such as sending the visitor’s cook-
ie data to another website. Thus, we consider any dy-
namic content that can be manipulated by user input
to be untrusted. We call user input which creates or
attempts to create malicious dynamic content an attack
vector.

Ligatti and Ray define code-injection attacks as at-
tacks in which untrusted content is used as code (Ray
& Ligatti, 2012). Shar and Tan define XSS attacks as
attacks in which web browsers treat untrusted content
as scripting content (Shar & Tan, 2012). As these defi-
nitions demonstrate, the identification and prevention
of XSS attacks requires two things: an understanding of
when untrusted content may be interpreted as browser
scripting content and how attackers bypass preventa-
tive measures to inject scripting content into web pages
served to others.

According to the HTML 4.01 Strict Doctype Defi-

nition (DTD), web browsers should only invoke scripts
within script elements and event attributes. As high-
lighted by Bisht and Venkatakrishnan, however, brows-
er quirks introduce major difficulty and uncertainty in
identifying potential scripting content (Bisht & Ven-
katakrishnan, 2008). For example, some versions of
Internet Explorer invoke JavaScript when “javascript:”
starts the IMG element’s src attribute value. Addition-
ally, embedded content, such as Cascading Style Sheets
(CSS) and Flash files, can contain browser-side scripting
content and is impossible to detect without also scan-
ning the embedded content (OWASP, 2013). Thus, to
prevent scripting invocations based on only a web page’s
HTML, one must prevent untrusted content from: de-
viating from well-defined HTML; abusing known web
browser quirks; and affecting or introducing script ele-
ments, event attributes, and embedded content.

As demonstrated by OWASP’s filter evasion cheat
sheet samples (made by RSnake), a successful attack vec-
tor produce untrusted content that interacts with trust-
ed content by opening or closing elements and starting
or ending attributes (OWASP, 2013). When untrusted
content is not restrained, an attack vector can trivially
invoke JavaScript; to end an attribute, untrusted content
needs only to contain a quotation mark; and to close an
element, untrusted content needs only to contain the el-
ement’s closing tag. As a result, unchecked input leaves
a site completely vulnerable to XSS attacks.

Restraining untrusted content restricts the ways in
which user input may be used and increases the burden
of creating feature-rich web applications, however. For
instance, the safest use of untrusted content is to force

ABSTRACT

Preventing Cross-Site Scripting with Script-
Free HTML
Matthew Seffernick

The injection of scripts into a web page by means of evading input filtering is called a cross-site
scripting (XSS) attack. Even popular websites, such as Google, Facebook, and YouTube, have
been exploited by XSS attacks. In 2010, OWASP ranked XSS attacks the 2nd-leading source of
web security risk. Current methods to prevent XSS exploits are either ineffective (allowing some
attacks to succeed) or overly prohibitive (preventing legitimate HTML-rich content). This paper
describes a new approach: the structure of safe input is rigorously defined and a server-side tool
is implemented to detect the presence of a potential XSS attack. This tool prevents XSS attacks
while still permitting HTML-rich content. We define a new context-free grammar (Script-Free HTML
4) that precisely characterizes safe input. Our approach is evaluated by applying it to a bench-
mark of known XSS vulnerabilities. We also consider the future evolution of this approach in the
ever-changing world of web standards.

JUROS Science and Technology

every character to be printed, not interpreted, by the
web browser (such as when a search engine displays the
search query) or to check the input for an enumerated
value and to behave in response in a well-defined way
(such as using a checkbox to determine if or how dates
should be displayed). The tradeoff may be acceptable
to banking and search websites, where the focus is on
the service provided. Websites whose focus is on user
content, such as forums or blogs, however, may prefer
to permit users direct access to some HTML features for
formatting text and structuring web pages.

Related Work
SQL injection attacks are a web application securi-

ty problem similar to XSS attacks. In an SQL injection
attack, an attacker sends an attack vector to a web appli-
cation with the intent of the web application executing
the string as code in an SQL statement rather than as a
literal value (Su & Wassermann, 2006). As a result of
SQL injection attacks, attackers may steal information
from the website (such as obtaining account details and
login credentials) or remove information from the site
(such as dropping a database).

An approach to detect these attacks at run-time is
to create and compare SQL query parse trees (Buehrer,
Weide, & Sivilotti, 2005). A parse tree represents the
structure of an SQL statement, where leaves of the tree
represent specific tokens (keywords, identifiers, and lit-
erals) and nodes of the tree represent groups of tokens.
Assuming web applications always intend for untrusted
content to be a proper subtree in an SQL parse tree, the
parse tree generated as the result of an SQL injection at-
tack necessarily will not syntactically match that of the
parse tree generated by the SQL query intended by the
web application.

To apply this approach to XSS attacks, we would
compare JavaScript parse trees rather than SQL parse
trees. However, web pages sent to visitors consists of
HTML, which web browsers interpret to invoke JavaS-
cript. Thus, we would need to work with HTML parse
trees rather than JavaScript parse trees. Then we would
need to determine what subtrees of an HTML parse tree
invoke JavaScript and detect when subtrees construct-
ed from untrusted content contain subtrees that invoke
JavaScript. The application would detect potential XSS
attacks but would not respond to them.

An approach to detect SQL injection vulnerabili-
ties before run-time is to first describe, via a grammar,

all possible SQL queries generated by untrusted con-
tent and application code; then determine if the re-
sulting grammar will permit an SQL injection attack
(Wassermann & Su, 2007). In their implementation,
Wassermann and Su use context-free grammar rules to
describe the changes a string may undergo by PHP op-
erations and methods. Once the grammar for the given
code is generated, they test if the grammar can produce
a syntactically open SQL statement, such as if a query
string can contain an odd number of non-escaped quo-
tation marks.

To apply this approach to XSS attacks, we would
define our target language to be HTML but excluding
all JavaScript invocations. We would then analyze the
web application code, produce a grammar for all possi-
ble web pages, and determine if the produced grammar
would permit a syntactically open HTML page. Web
applications would then scan their applications before
exposing the application to live web traffic, fix any de-
tected issues, and rescan after fixing.

Summary of Existing Approaches
Shar and Tan highlight 3 simple, yet popular and

effective, methods for preventing XSS attacks: black-
listing, whitelisting, and character escaping. Blacklists
describe unsafe input that should be rejected when en-
countered. Typically, web applications blacklist attack
vectors by describing them with regular expressions
and scanning attack vectors and untrusted content for
matches. When the application encounters a match, the
application removes or replaces the matched substring
or rejects the entire string. Whitelists, on the other
hand, describe safe input; web applications reject in-
put that does not match values matched by its whitelist.
Character escaping replaces all HTML meta-characters
with their HTML-encoded equivalents. That is, any
character in user input which would normally have
special meaning to a web browser is replaced with text
which instructs web browsers to display the character
rather than interpret it (Shar & Tan, 2012).

XSS-Guard generates a webpage twice, once with
user input and once with safe input. Both webpages
send their input through the same path through the web
application’s code: the path the user input takes. Using a
parser derived from FireFox’s content sink, XSS-Guard
generates a JavaScript parse tree for each page and com-
pares the parse trees. If XSS-Guard finds that the parse
trees are syntactically equivalent, XSS-Guard considers

JUROS Science and Technology

the generated output safe and does nothing. Otherwise,
it alters the scripting content sent to the user, replacing
what it identifies as malicious scripting content with a
benign replacement. Thus, XSS-Guard uses the gener-
ated scripting content to determine safeness rather than
just the untrusted content (Bisht & Venkatakrishnan,
2008).

HTML Purifier uses the structure of HTML and a
whitelist of HTML elements and attributes to maintain
a description of safe input. The application parses input
into tokens, alters and validates input according to its
settings, and converts the resulting tokens back into a
string for use by the web application. HTML Purifier
intends for web applications to receive user input, pass
the user input through HTML Purifier, and embed the
returned text straight into the output page (Yang, 2012).

Analysis of Existing Approaches
Due to their simplicity, blacklists, whitelists, and

character escaping are efficient and easy to use. How-
ever, as Shar and Tan indicate, they each have issues.
Blacklists tend to fail to catch all attack vectors; wh-
itelists prohibit much safe, valid content; and charac-
ter escaping prevents use of HTML-rich content (Shar
& Tan, 2012). As a result, web developers cannot use
these methods to permit HTML-rich content, such
as an entire self-structured web page on a blog site or
self-formatted text in a forum post.

XSS-Guard more effectively detects scripting con-
tent due to its high-level approach, but at the cost of
generating and comparing two JavaScript parse trees
and sanitizing scripting output. Additionally, XSS-
Guard fails when web applications use conditional
copying, such as when one string is copied character by
character to another string which is then included in
the output HTML response. XSS-Guard also fails when
an exploit is embedded in a Flash object included by the
web application (Bisht & Venkatakrishnan, 2008).

HTML Purifier’s enforcement of a strict HTML
structure and an element and attribute whitelist effec-
tively prevents most risky user input. However, HTML
Purifier’s behavior is difficult to reason about due to its
highly configurable whitelist and lack of clearly defined
behavior for detecting and editing. Additionally, HTML
Purifier does not sanitize input based on the context in
which the input will be used, potentially leading to un-
safe use of “safe” input, an issue discussed by Ligatti and
Ray.

Objective
	 In this paper, we present a new approach for pre-

venting XSS attacks. We describe safe content, HTML
free of JavaScript invocations, with a context-free gram-
mar and implement a parser for the grammar. Web ap-
plications can then use the parser to verify that untrust-
ed content will not produce JavaScript invocations.

METHODOLOGY
Summary

To address the problem of XSS attacks, we devel-
op: a context-free grammar, called Script-Free HTML
4 (SFH4), which produces a language that follows the
structure of HTML and is free from JavaScript invoca-
tions; a parser for SFH4; and a methodology for gener-
ating a context-free grammar and parser from a Docu-
ment-Type Definition (DTD).

SFH4 determines if input is safe or unsafe on the
basis of the input’s HTML structure and scripting con-
tent. For instance, if untrusted content consists of well-
formed HTML 4 with no signs of possible script invo-
cations, SFH4 accepts it as safe. Conversely, if untrusted
content contains malformed HTML 4 or content which
follows a pattern known to risk browser script invoca-
tion, SFH4 rejects it as potentially unsafe. Thus, SFH4
is sound but imprecise; it only accepts safe input, but
also rejects input which may, in practice, be safe. For a
snippet of the grammar, see Figure 1.

SFH4’s rewrite rules follow the structure of an
XML document but contain only the subset of elements

Fig.1. In the given grammar snippet, tokens are nonterminals
are in bold, terminals are in italics, and tokens are underlined.

JUROS Science and Technology

Figure 3.
If the parser accepts the test page, the untrusted

content follows HTML structure and contains no ele-
ments or attributes at risk for invoking JavaScript. This
judgment may vary based on the HTML surrounding
the untrusted content, however, so untrusted content
must be rescanned with a new test page for each context
in which it is used. If the parser rejects a test page, the
web application may sanitize the untrusted content and
rescan it, or the web application may reject the untrust-
ed content and request new input; the web application
should not use the untrusted content as-is in the con-
text intended.

Implementation
In generating and implementing our SFH4 gram-

mar, we used the HTML 4.01 Strict DTD as input,
mIRC Scripting Language (MSL) from mIRC v7.17 for
generating token and grammar definitions, GNU Bi-
son v2.4.1 and GNU Flex v2.5.4 to generate the C code
for the scanner and parser, and Gnu C Compiler (gcc)
v4.6.1 to compile the scanner and parser code. To sum-
marize the process before going into detail, we take a
Document Type Definition (DTD) and manually cre-
ated configuration files as input and, in steps 1 and 2,
parse the DTD to create a whitelist of permitted ele-
ments and attributes. In step 3, we alter the whitelist
of elements and attributes to exclude the elements and
attributes we deem unsafe. In step 4, we generate the
grammar using the whitelist of elements and attributes
and configuration files. In the remaining steps, the Bi-
son and Flex applications generate C code for the parser
using our grammar definition, and gcc compiles the C
code into the final executable. For an overview of the
workflow, see Figure 4.

Firstly, an MSL procedure (parseItems) parses the
DTD for element, attribute, and entity definitions. Sec-
ondly, more MSL procedures (evaluateEntities, eval-
uateElements, and evaluateAttributes) evaluate the
definitions and parse them into two lists: a list of ele-

and attributes from the HTML 4.01 Strict DTD we
deemed safe. To decide which elements and attributes
were safe, we reviewed each element and attribute from
the HTML 4.01 Strict DTD and the attack vector sam-
ples made available by OWASP (OWASP, 2013). The
contents of the whitelist can be altered without affect-
ing our approach. Of the available elements, we per-
mitted all but base, link, meta, object, param, script,
and style. Most of these elements were not permitted
due to risk from embedding content. Of the available
attributes, we permitted all but onclick, ondblclick,
onmousedown, onmouseup, onmouseover, onmouse-
move, onmouseout, onkeypress, onkeydown, onkeyup,
action, profile, onfocus, onblur, and style. Most of these
attributes were not permitted due to explicit JavaScript
invocations. Due to a known browser quirk with some
versions of Internet Explorer, we also defined a special
token for the img element’s src attribute to permit only
URLs.

To use SFH4, a web application must run a serv-
er-side parser for the grammar and construct test pages
to pass to the parser. To see the context in which an
SHF4 parser would be used, see Figure 2. Test pag-
es contain the untrusted content the web application
wishes to verify as well as surrounding HTML to define
the context in which the untrusted content will be used.
The test page also separates the trusted content, which
may contain JavaScript invocations, from the untrusted
content, which should not. For a sample test page, see

Fig. 2. SFH scans untrusted content on the server after the server
receives a request but before the server sends a response.

Fig. 3. To scan untrusted content, web applications must pro-
vide SFH with the context in which the untrusted content will
be used.

JUROS Science and Technology

ments and their permitted sub elements, and a list of
elements and their attribute declarations. In the third
step, another MSL procedure (removeItems) modifies
the two lists to remove unsafe elements and attributes
and restrict the values of attributes with known browser
quirks. Rather than removing elements and attributes
from the parsed data in step 3, we could have removed
element and attribute definitions from the DTD before
passing the DTD to the parsing process.

With exceptions from browser quirks, attack vec-
tors invoke JavaScript via unsafe attributes, not particu-
lar values within otherwise safe attributes. As such, we
default the value type of all attributes to PCDATA and
make special exceptions for known browser quirks. By
defaulting attribute value types to PCDATA, we lower
the number of tokens we must manually define.

In the fourth step, another MSL procedure
(makeInputFiles) reads the parsed data and configu-
ration files to generate the token and grammar defini-
tions. To generate the token definitions, the procedure
reads from a configuration file containing definitions
for token patterns and code to execute when a pattern
is matched. With the code written in C, we use global
variables to track whether the current token is inside
a tag, inside an attribute, or in-between tags. We give
each element and attribute ID its own token and use
MSL to procedurally generate a method (parseID)
which, given an input string, returns the token for the
ID if it is on the whitelist or an error token otherwise,
thus prohibiting blacklisted and unknown element and
attribute IDs.

To generate the grammar definition, makeInput-
Files reads two configuration files. The first file con-
tains: a C prototype for a method (yylex) required by

Bison and implemented by Flex, specially defined scan-
ner tokens (PCDATA, URI, ERROR, and DOCTYPE),
and a start rule for the grammar. The second configu-
ration file contains implementations of two C methods
(yyerror and main) required by Bison. makeInputFiles
procedurally generates scanner tokens for every ele-
ment and attribute ID, as well as the grammar rewrite
rules for all elements and attributes.

In the fifth step, the token and grammar defini-
tions are passed to Flex and Bison, generating C code
for the scanner and parser. Finally, gcc compiles the C
code with gcc to create the parser executable.

RESULTS
To test our approach, we implemented and com-

piled our SFH4 parser and passed it input from files.
To test the soundness of our approach, we passed the
parser 16 attack vectors based on OWASP’s filter eva-
sion cheat sheet. To test the precision of our approach,
we passed the parser 5 examples of safe input based on
the HTML 4.01 Strict DTD. Finally, to test the perfor-
mance of our implementation, we passed each of our
test cases, as well as an additional 2.8KB test case to
simulate a large test page, to the parser 20 times. For
descriptions and results of test cases used, see Table 1.

Our implementation rejected all 16 attack vec-
tors it should have rejected, but it only accepted 4 of
the 5 cases of safe input it should have accepted. In the
rejected safe case, the parser rejected UTF-8 encoded
text, whereas the other test cases used ASCII-encoded
text. The system used to test performance of our im-
plementation had an 8-core Intel(R) Xeon(TM) CPU
at 2.80GHz per core, and 8059128 kB of memory. The
tests ran with a mean of 0.022 seconds per set of 22
tests, or 0.001 seconds per test, with a variance of 0.004
seconds.

DISCUSSION
Key Findings

Upon analyzing common attack vectors, we found
that most attack vectors could be generalized to a few
patterns. In general, attack vectors: violate HTML struc-
ture, embed foreign content, invoke scripts in CSS, or
exploit browser quirks. Enforcing a strict HTML struc-
ture handles the case of input violating HTML struc-
ture, and enforcing an element and attribute whitelist
handles the cases of input embedding foreign content
and CSS. Because browser quirks vary by version and

Fig.4. Our contribution in the shown workflow diagram has a
dotted border. Input and output are rounded shapes, and pro-
cesses are rectangular shapes.

JUROS Science and Technology

brand of web browser, browser quirks are difficult to
handle and impossible to predict. Thus, an important
step to preventing XSS attacks is for web browsers to
only invoke scripts in standardized cases.

Our approach requires user input be scanned for
every context in which it is used. Input that is syntac-
tically correct and safe in one context (such as between
HTML div tags) may not be syntactically correct or safe
in another context (such as inside the open tag of an
HTML div element). Thus, validating input is not as
simple as scanning it once before storing it or scanning
it and then using it in multiple locations. The only safe
solutions are to validate input before each of its uses or
to track the contexts in which the input will be used and
validate the input once for each context before use.

Our SFH4 parser successfully rejected all the cat-
egories of attacks presented on OWASP’s filter evasion
cheat sheet, demonstrating our approach’s ability to de-
tect potential XSS attacks. The test case in which our
parser failed, parsing UTF-8 encoded text, shows a lim-
itation on our implementation but not our approach.
With a mean runtime of 0.001 seconds per test on hard-
ware used as a webserver, the runtime is very acceptable
for real world application.

Future Work
One shortcoming of our implementation is that it

can only handle ASCII-encoded text, thus preventing it
from working with non-english characters. To correct
this, our parser will need extended to handle other char-
acter encodings, such as UTF-8. Another shortcoming

Table 1. Our parser passed all test cases except an encoding is-
sue, which is implementation-specific

of our implementation is that it launches a new process
for each test page it parses, thus introducing processing
overhead that may not scale to heavily-visited websites.
To address this, our parser will need altered to run as a
service and accept multiple calls before exiting. Finally,
our approach currently gives web applications no infor-
mation other than whether or not a test page matches
our description of safe input. Thus, our approach can
be extended to correct unsafe input.

We tailored our approach around HTML 4 because
of its widespread use and defined standards, but as web
standards change, our approach needs to keep up to re-
main useful. To support HTML 5, the newest HTML
standard, we would need only to write a DTD for safe
HTML 5. Any DTD will work with our existing work
pipeline to produce an HTML parser, but HTML 5 does
not have a DTD, so a DTD will need to be written for it.
To support CSS 3, the newest CSS standard, our work
pipeline will need altered to accept CSS’s structure.
Otherwise, we can still use a context-free grammar to
describe safe CSS, content which our approach current-
ly prohibits.

Our implementation expects web applications
to construct test web pages mimicking the context in
which the user input will be embedded. Thus, our im-
plementation is not particularly simple to use on its own
and may be prone to human error from the web devel-
oper. A solution to this problem may be to package
the parser executable with development libraries that
interface with the executable. For instance, web devel-
opers might import a PHP library which: automatically
generates the prefix and suffix content for the test page;
runs the test page through the parser, encapsulating the
call to exec; and returns a value for “safe” and a value
for “unsafe” depending on the parser’s exit status. Such
a function should make the parser more convenient to
use and facilitate tracking of contexts in which input
has been validated.

REFERENCES

Bisht, P., & Venkatakrishnan, V. N. (2008). XSS-GUARD: Precise Dynamic Pre-
vention of Cross-Site Scripting Attacks. Proceedings of the 5th international
conference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, 23-43. Paris: Springer-Verlag. doi:10.1007/978-3-540-70542-0_2

Buehrer, G., Weide, B. W., & Sivilotti, P. A. (2005). Using parse tree validation to
prevent SQL injection attacks. In Proceedings of the 5th international work-
shop on Software engineering and middleware (pp. 106-113). New York: ACM.
doi:10.1145/1108473.1108496

OWASP. (2010). Category:OWASP Top Ten Project. Retrieved February 7, 2013,

JUROS Science and Technology

from OWASP: The Open Web Application Security Project: https://www.
owasp.org/index.php/Top_10

OWASP. (2012, November 25). Retrieved February 1, 2013, from OWASP: https://
www.owasp.org/index.php/Main_Page

OWASP. (2013, January 25). XSS Filter Evasion Cheat Sheet. Retrieved February
1, 2013, from OWASP: https://www.owasp.org/index.php/XSS_Filter_Eva-
sion_Cheat_Sheet

Ray, D., & Ligatti, J. (2012). Defining code-injection attacks. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (pp. 179-190). New York: ACM. doi:10.1145/2103656.2103678

Shar, L. K., & Tan, H. B. (2012). Defending against cross-site scripting attacks.
Computer, 55-62. doi:10.1109/MC.2011.261

Su, Z., & Wassermann, G. (2006). The essence of command injection attacks in
web applications. In Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (pp. 372-382). New York:
ACM. doi:10.1145/1111037.1111070

Wassermann, G., & Su, Z. (2007). Sound and precise analysis of web applications
for injection vulnerabilities. In Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation (pp. 32-41).
New York: ACM. doi:10.1145/1250734.1250739

Yang, E. (2012). Retrieved February 1, 2013, from HTML Purifier: http://htmlpu-
rifier.org/

