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INTRODUCTION
Background

Web pages are often generated dynamically by 
combining static templates with dynamic content.  Be-
cause the templates are static and changed only by the 
website staff, website administrators can reason that the 
templates produce web pages with desired appearanc-
es and behavior.  However, website administrators may 
not fully know how the behavior and appearance of web 
pages produced by their templates may be affected by 
incorporating dynamic content.  In some cases, the re-
sulting web page also produces desired appearance and 
behavior.  In other cases, however, it may cause visitors’ 
web browsers to execute code the web administrators 
consider undesirable, such as sending the visitor’s cook-
ie data to another website.  Thus, we consider any dy-
namic content that can be manipulated by user input 
to be untrusted.  We call user input which creates or 
attempts to create malicious dynamic content an attack 
vector.

Ligatti and Ray define code-injection attacks as at-
tacks in which untrusted content is used as code (Ray 
& Ligatti, 2012).  Shar and Tan define XSS attacks as 
attacks in which web browsers treat untrusted content 
as scripting content (Shar & Tan, 2012).  As these defi-
nitions demonstrate, the identification and prevention 
of XSS attacks requires two things: an understanding of 
when untrusted content may be interpreted as browser 
scripting content and how attackers bypass preventa-
tive measures to inject scripting content into web pages 
served to others.

According to the HTML 4.01 Strict Doctype Defi-

nition (DTD), web browsers should only invoke scripts 
within script elements and event attributes.  As high-
lighted by Bisht and Venkatakrishnan, however, brows-
er quirks introduce major difficulty and uncertainty in 
identifying potential scripting content (Bisht & Ven-
katakrishnan, 2008).  For example, some versions of 
Internet Explorer invoke JavaScript when “javascript:” 
starts the IMG element’s src attribute value.  Addition-
ally, embedded content, such as Cascading Style Sheets 
(CSS) and Flash files, can contain browser-side scripting 
content and is impossible to detect without also scan-
ning the embedded content (OWASP, 2013).  Thus, to 
prevent scripting invocations based on only a web page’s 
HTML, one must prevent untrusted content from: de-
viating from well-defined HTML; abusing known web 
browser quirks; and affecting or introducing script ele-
ments, event attributes, and embedded content.

As demonstrated by OWASP’s filter evasion cheat 
sheet samples (made by RSnake), a successful attack vec-
tor produce untrusted content that interacts with trust-
ed content by opening or closing elements and starting 
or ending attributes (OWASP, 2013).  When untrusted 
content is not restrained, an attack vector can trivially 
invoke JavaScript; to end an attribute, untrusted content 
needs only to contain a quotation mark; and to close an 
element, untrusted content needs only to contain the el-
ement’s closing tag.  As a result, unchecked input leaves 
a site completely vulnerable to XSS attacks.

Restraining untrusted content restricts the ways in 
which user input may be used and increases the burden 
of creating feature-rich web applications, however.  For 
instance, the safest use of untrusted content is to force 
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every character to be printed, not interpreted, by the 
web browser (such as when a search engine displays the 
search query) or to check the input for an enumerated 
value and to behave in response in a well-defined way 
(such as using a checkbox to determine if or how dates 
should be displayed).  The tradeoff may be acceptable 
to banking and search websites, where the focus is on 
the service provided.  Websites whose focus is on user 
content, such as forums or blogs, however, may prefer 
to permit users direct access to some HTML features for 
formatting text and structuring web pages.

Related Work
SQL injection attacks are a web application securi-

ty problem similar to XSS attacks.  In an SQL injection 
attack, an attacker sends an attack vector to a web appli-
cation with the intent of the web application executing 
the string as code in an SQL statement rather than as a 
literal value (Su & Wassermann, 2006).  As a result of 
SQL injection attacks, attackers may steal information 
from the website (such as obtaining account details and 
login credentials) or remove information from the site 
(such as dropping a database).

An approach to detect these attacks at run-time is 
to create and compare SQL query parse trees (Buehrer, 
Weide, & Sivilotti, 2005).  A parse tree represents the 
structure of an SQL statement, where leaves of the tree 
represent specific tokens (keywords, identifiers, and lit-
erals) and nodes of the tree represent groups of tokens.  
Assuming web applications always intend for untrusted 
content to be a proper subtree in an SQL parse tree, the 
parse tree generated as the result of an SQL injection at-
tack necessarily will not syntactically match that of the 
parse tree generated by the SQL query intended by the 
web application.

To apply this approach to XSS attacks, we would 
compare JavaScript parse trees rather than SQL parse 
trees.  However, web pages sent to visitors consists of 
HTML, which web browsers interpret to invoke JavaS-
cript.  Thus, we would need to work with HTML parse 
trees rather than JavaScript parse trees.  Then we would 
need to determine what subtrees of an HTML parse tree 
invoke JavaScript and detect when subtrees construct-
ed from untrusted content contain subtrees that invoke 
JavaScript.  The application would detect potential XSS 
attacks but would not respond to them.

An approach to detect SQL injection vulnerabili-
ties before run-time is to first describe, via a grammar, 

all possible SQL queries generated by untrusted con-
tent and application code; then determine if the re-
sulting grammar will permit an SQL injection attack 
(Wassermann & Su, 2007).  In their implementation, 
Wassermann and Su use context-free grammar rules to 
describe the changes a string may undergo by PHP op-
erations and methods.  Once the grammar for the given 
code is generated, they test if the grammar can produce 
a syntactically open SQL statement, such as if a query 
string can contain an odd number of non-escaped quo-
tation marks.

To apply this approach to XSS attacks, we would 
define our target language to be HTML but excluding 
all JavaScript invocations.  We would then analyze the 
web application code, produce a grammar for all possi-
ble web pages, and determine if the produced grammar 
would permit a syntactically open HTML page.  Web 
applications would then scan their applications before 
exposing the application to live web traffic, fix any de-
tected issues, and rescan after fixing.

Summary of Existing Approaches
Shar and Tan highlight 3 simple, yet popular and 

effective, methods for preventing XSS attacks: black-
listing, whitelisting, and character escaping.  Blacklists 
describe unsafe input that should be rejected when en-
countered.  Typically, web applications blacklist attack 
vectors by describing them with regular expressions 
and scanning attack vectors and untrusted content for 
matches.  When the application encounters a match, the 
application removes or replaces the matched substring 
or rejects the entire string.  Whitelists, on the other 
hand, describe safe input; web applications reject in-
put that does not match values matched by its whitelist.  
Character escaping replaces all HTML meta-characters 
with their HTML-encoded equivalents.  That is, any 
character in user input which would normally have 
special meaning to a web browser is replaced with text 
which instructs web browsers to display the character 
rather than interpret it (Shar & Tan, 2012).

XSS-Guard generates a webpage twice, once with 
user input and once with safe input.  Both webpages 
send their input through the same path through the web 
application’s code: the path the user input takes.  Using a 
parser derived from FireFox’s content sink, XSS-Guard 
generates a JavaScript parse tree for each page and com-
pares the parse trees.  If XSS-Guard finds that the parse 
trees are syntactically equivalent, XSS-Guard considers 
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the generated output safe and does nothing.  Otherwise, 
it alters the scripting content sent to the user, replacing 
what it identifies as malicious scripting content with a 
benign replacement.  Thus, XSS-Guard uses the gener-
ated scripting content to determine safeness rather than 
just the untrusted content (Bisht & Venkatakrishnan, 
2008).

HTML Purifier uses the structure of HTML and a 
whitelist of HTML elements and attributes to maintain 
a description of safe input.  The application parses input 
into tokens, alters and validates input according to its 
settings, and converts the resulting tokens back into a 
string for use by the web application.  HTML Purifier 
intends for web applications to receive user input, pass 
the user input through HTML Purifier, and embed the 
returned text straight into the output page (Yang, 2012).

Analysis of Existing Approaches
Due to their simplicity, blacklists, whitelists, and 

character escaping are efficient and easy to use.  How-
ever, as Shar and Tan indicate, they each have issues.  
Blacklists tend to fail to catch all attack vectors; wh-
itelists prohibit much safe, valid content; and charac-
ter escaping prevents use of HTML-rich content (Shar 
& Tan, 2012).  As a result, web developers cannot use 
these methods to permit HTML-rich content, such 
as an entire self-structured web page on a blog site or 
self-formatted text in a forum post.

XSS-Guard more effectively detects scripting con-
tent due to its high-level approach, but at the cost of 
generating and comparing two JavaScript parse trees 
and sanitizing scripting output.  Additionally, XSS-
Guard fails when web applications use conditional 
copying, such as when one string is copied character by 
character to another string which is then included in 
the output HTML response.  XSS-Guard also fails when 
an exploit is embedded in a Flash object included by the 
web application (Bisht & Venkatakrishnan, 2008).

HTML Purifier’s enforcement of a strict HTML 
structure and an element and attribute whitelist effec-
tively prevents most risky user input.  However, HTML 
Purifier’s behavior is difficult to reason about due to its 
highly configurable whitelist and lack of clearly defined 
behavior for detecting and editing.  Additionally, HTML 
Purifier does not sanitize input based on the context in 
which the input will be used, potentially leading to un-
safe use of “safe” input, an issue discussed by Ligatti and 
Ray.

Objective
	 In this paper, we present a new approach for pre-

venting XSS attacks.  We describe safe content, HTML 
free of JavaScript invocations, with a context-free gram-
mar and implement a parser for the grammar.  Web ap-
plications can then use the parser to verify that untrust-
ed content will not produce JavaScript invocations.

METHODOLOGY
Summary

To address the problem of XSS attacks, we devel-
op: a context-free grammar, called Script-Free HTML 
4 (SFH4), which produces a language that follows the 
structure of HTML and is free from JavaScript invoca-
tions; a parser for SFH4; and a methodology for gener-
ating a context-free grammar and parser from a Docu-
ment-Type Definition (DTD).

SFH4 determines if input is safe or unsafe on the 
basis of the input’s HTML structure and scripting con-
tent.  For instance, if untrusted content consists of well-
formed HTML 4 with no signs of possible script invo-
cations, SFH4 accepts it as safe.  Conversely, if untrusted 
content contains malformed HTML 4 or content which 
follows a pattern known to risk browser script invoca-
tion, SFH4 rejects it as potentially unsafe.  Thus, SFH4 
is sound but imprecise; it only accepts safe input, but 
also rejects input which may, in practice, be safe.  For a 
snippet of the grammar, see Figure 1.

SFH4’s rewrite rules follow the structure of an 
XML document but contain only the subset of elements 

Fig.1. In the given grammar snippet, tokens are nonterminals 
are in bold, terminals are in italics, and tokens are underlined.
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Figure 3.
If the parser accepts the test page, the untrusted 

content follows HTML structure and contains no ele-
ments or attributes at risk for invoking JavaScript.  This 
judgment may vary based on the HTML surrounding 
the untrusted content, however, so untrusted content 
must be rescanned with a new test page for each context 
in which it is used.  If the parser rejects a test page, the 
web application may sanitize the untrusted content and 
rescan it, or the web application may reject the untrust-
ed content and request new input; the web application 
should not use the untrusted content as-is in the con-
text intended.

Implementation
In generating and implementing our SFH4 gram-

mar, we used the HTML 4.01 Strict DTD as input, 
mIRC Scripting Language (MSL) from mIRC v7.17 for 
generating token and grammar definitions, GNU Bi-
son v2.4.1 and GNU Flex v2.5.4 to generate the C code 
for the scanner and parser, and Gnu C Compiler (gcc) 
v4.6.1 to compile the scanner and parser code.  To sum-
marize the process before going into detail, we take a 
Document Type Definition (DTD) and manually cre-
ated configuration files as input and, in steps 1 and 2, 
parse the DTD to create a whitelist of permitted ele-
ments and attributes.  In step 3, we alter the whitelist 
of elements and attributes to exclude the elements and 
attributes we deem unsafe.  In step 4, we generate the 
grammar using the whitelist of elements and attributes 
and configuration files.  In the remaining steps, the Bi-
son and Flex applications generate C code for the parser 
using our grammar definition, and gcc compiles the C 
code into the final executable.  For an overview of the 
workflow, see Figure 4.

Firstly, an MSL procedure (parseItems) parses the 
DTD for element, attribute, and entity definitions.  Sec-
ondly, more MSL procedures (evaluateEntities, eval-
uateElements, and evaluateAttributes) evaluate the 
definitions and parse them into two lists: a list of ele-

and attributes from the HTML 4.01 Strict DTD we 
deemed safe.  To decide which elements and attributes 
were safe, we reviewed each element and attribute from 
the HTML 4.01 Strict DTD and the attack vector sam-
ples made available by OWASP (OWASP, 2013).  The 
contents of the whitelist can be altered without affect-
ing our approach.  Of the available elements, we per-
mitted all but base, link, meta, object, param, script, 
and style.  Most of these elements were not permitted 
due to risk from embedding content.  Of the available 
attributes, we permitted all but onclick, ondblclick, 
onmousedown, onmouseup, onmouseover, onmouse-
move, onmouseout, onkeypress, onkeydown, onkeyup, 
action, profile, onfocus, onblur, and style.  Most of these 
attributes were not permitted due to explicit JavaScript 
invocations.  Due to a known browser quirk with some 
versions of Internet Explorer, we also defined a special 
token for the img element’s src attribute to permit only 
URLs.

To use SFH4, a web application must run a serv-
er-side parser for the grammar and construct test pages 
to pass to the parser.  To see the context in which an 
SHF4 parser would be used, see Figure 2.  Test pag-
es contain the untrusted content the web application 
wishes to verify as well as surrounding HTML to define 
the context in which the untrusted content will be used.  
The test page also separates the trusted content, which 
may contain JavaScript invocations, from the untrusted 
content, which should not.  For a sample test page, see 

Fig. 2. SFH scans untrusted content on the server after the server 
receives a request but before the server sends a response.

Fig. 3. To scan untrusted content, web applications must pro-
vide SFH with the context in which the untrusted content will 
be used.
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ments and their permitted sub elements, and a list of 
elements and their attribute declarations.  In the third 
step, another MSL procedure (removeItems) modifies 
the two lists to remove unsafe elements and attributes 
and restrict the values of attributes with known browser 
quirks.  Rather than removing elements and attributes 
from the parsed data in step 3, we could have removed 
element and attribute definitions from the DTD before 
passing the DTD to the parsing process.

With exceptions from browser quirks, attack vec-
tors invoke JavaScript via unsafe attributes, not particu-
lar values within otherwise safe attributes.  As such, we 
default the value type of all attributes to PCDATA and 
make special exceptions for known browser quirks.  By 
defaulting attribute value types to PCDATA, we lower 
the number of tokens we must manually define.

In the fourth step, another MSL procedure 
(makeInputFiles) reads the parsed data and configu-
ration files to generate the token and grammar defini-
tions.  To generate the token definitions, the procedure 
reads from a configuration file containing definitions 
for token patterns and code to execute when a pattern 
is matched.  With the code written in C, we use global 
variables to track whether the current token is inside 
a tag, inside an attribute, or in-between tags.  We give 
each element and attribute ID its own token and use 
MSL to procedurally generate a method (parseID) 
which, given an input string, returns the token for the 
ID if it is on the whitelist or an error token otherwise, 
thus prohibiting blacklisted and unknown element and 
attribute IDs.

To generate the grammar definition, makeInput-
Files reads two configuration files.  The first file con-
tains: a C prototype for a method (yylex) required by 

Bison and implemented by Flex, specially defined scan-
ner tokens (PCDATA, URI, ERROR, and DOCTYPE), 
and a start rule for the grammar.  The second configu-
ration file contains implementations of two C methods 
(yyerror and main) required by Bison.  makeInputFiles 
procedurally generates scanner tokens for every ele-
ment and attribute ID, as well as the grammar rewrite 
rules for all elements and attributes.

In the fifth step, the token and grammar defini-
tions are passed to Flex and Bison, generating C code 
for the scanner and parser.  Finally, gcc compiles the C 
code with gcc to create the parser executable.

RESULTS
To test our approach, we implemented and com-

piled our SFH4 parser and passed it input from files.  
To test the soundness of our approach, we passed the 
parser 16 attack vectors based on OWASP’s filter eva-
sion cheat sheet.  To test the precision of our approach, 
we passed the parser 5 examples of safe input based on 
the HTML 4.01 Strict DTD.  Finally, to test the perfor-
mance of our implementation, we passed each of our 
test cases, as well as an additional 2.8KB test case to 
simulate a large test page, to the parser 20 times.  For 
descriptions and results of test cases used, see Table 1.

Our implementation rejected all 16 attack vec-
tors it should have rejected, but it only accepted 4 of 
the 5 cases of safe input it should have accepted.  In the 
rejected safe case, the parser rejected UTF-8 encoded 
text, whereas the other test cases used ASCII-encoded 
text. The system used to test performance of our im-
plementation had an 8-core Intel(R) Xeon(TM) CPU 
at 2.80GHz per core, and 8059128 kB of memory.  The 
tests ran with a mean of 0.022 seconds per set of 22 
tests, or 0.001 seconds per test, with a variance of 0.004 
seconds.

DISCUSSION
Key Findings

Upon analyzing common attack vectors, we found 
that most attack vectors could be generalized to a few 
patterns.  In general, attack vectors: violate HTML struc-
ture, embed foreign content, invoke scripts in CSS, or 
exploit browser quirks.  Enforcing a strict HTML struc-
ture handles the case of input violating HTML struc-
ture, and enforcing an element and attribute whitelist 
handles the cases of input embedding foreign content 
and CSS.  Because browser quirks vary by version and 

Fig.4. Our contribution in the shown workflow diagram has a 
dotted border.  Input and output are rounded shapes, and pro-
cesses are rectangular shapes.
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brand of web browser, browser quirks are difficult to 
handle and impossible to predict.  Thus, an important 
step to preventing XSS attacks is for web browsers to 
only invoke scripts in standardized cases.

Our approach requires user input be scanned for 
every context in which it is used.  Input that is syntac-
tically correct and safe in one context (such as between 
HTML div tags) may not be syntactically correct or safe 
in another context (such as inside the open tag of an 
HTML div element).  Thus, validating input is not as 
simple as scanning it once before storing it or scanning 
it and then using it in multiple locations.  The only safe 
solutions are to validate input before each of its uses or 
to track the contexts in which the input will be used and 
validate the input once for each context before use.

Our SFH4 parser successfully rejected all the cat-
egories of attacks presented on OWASP’s filter evasion 
cheat sheet, demonstrating our approach’s ability to de-
tect potential XSS attacks.  The test case in which our 
parser failed, parsing UTF-8 encoded text, shows a lim-
itation on our implementation but not our approach.  
With a mean runtime of 0.001 seconds per test on hard-
ware used as a webserver, the runtime is very acceptable 
for real world application.

Future Work
One shortcoming of our implementation is that it 

can only handle ASCII-encoded text, thus preventing it 
from working with non-english characters.  To correct 
this, our parser will need extended to handle other char-
acter encodings, such as UTF-8.  Another shortcoming 

Table 1. Our parser passed all test cases except an encoding is-
sue, which is implementation-specific

of our implementation is that it launches a new process 
for each test page it parses, thus introducing processing 
overhead that may not scale to heavily-visited websites.  
To address this, our parser will need altered to run as a 
service and accept multiple calls before exiting.  Finally, 
our approach currently gives web applications no infor-
mation other than whether or not a test page matches 
our description of safe input.  Thus, our approach can 
be extended to correct unsafe input.

We tailored our approach around HTML 4 because 
of its widespread use and defined standards, but as web 
standards change, our approach needs to keep up to re-
main useful.  To support HTML 5, the newest HTML 
standard, we would need only to write a DTD for safe 
HTML 5.  Any DTD will work with our existing work 
pipeline to produce an HTML parser, but HTML 5 does 
not have a DTD, so a DTD will need to be written for it.  
To support CSS 3, the newest CSS standard, our work 
pipeline will need altered to accept CSS’s structure.  
Otherwise, we can still use a context-free grammar to 
describe safe CSS, content which our approach current-
ly prohibits.

Our implementation expects web applications 
to construct test web pages mimicking the context in 
which the user input will be embedded.  Thus, our im-
plementation is not particularly simple to use on its own 
and may be prone to human error from the web devel-
oper.  A solution to this problem may be to package 
the parser executable with development libraries that 
interface with the executable.  For instance, web devel-
opers might import a PHP library which: automatically 
generates the prefix and suffix content for the test page; 
runs the test page through the parser, encapsulating the 
call to exec; and returns a value for “safe” and a value 
for “unsafe” depending on the parser’s exit status.  Such 
a function should make the parser more convenient to 
use and facilitate tracking of contexts in which input 
has been validated. 
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